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Stochastic Theory of Nonlinear Rate Processes 
with Multiple Stationary States. 
II. Relaxation Time from a Metastable State 
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We have developed a methodology for obtaining a Fokker-Planck equation 
for nonlinear systems with multiple stationary states that yields the correct 
system size dependence, i.e., exponential growth with system size of the 
relaxation time from a metastable state. We show that this relaxation time 
depends strongly on the barrier height U(x) between the metastable and 
stable states of the system. For a Fokker-Planck (FP) equation to yield the 
correct result for the relaxation time from a metastable state, it is therefore 
essential that the free energy function U(x) of the FP equation not only 
correctly locate the extrema of U(x), but also have the correct magnitude U 
at these extrema. This is accomplished by so choosing the coefficients of the 
FP equation that its stationary solution is identical to that of the master 
equation that defines the nonlinear system. 

KEY W O R D S :  Stochastic processes; nonlinear rate processes; Fokker- 
Planek equation; mean first passage times; metastable states; system size 
expansion. 

1. I N T R O D U C T I O N  

Fluctuat ion,  rate, and relaxation phenomena  in nonl inear  mult is tate  systems 

have recently attracted considerable at tention.  <1-~2> The first at tempts at the 

analysis of f luctuation and relaxation phenomena  in nonl inear  systems were 

based on a Fokke r -P lanck  (FP) equat ion approach in parallel  with its 

successful use in the theory of l inear systems. Van K a m p e n  (~) demonstrated,  

however, that  in dealing with nonequi l ib r ium processes in nonl inear  macro-  

systems it is in general necessary to use a full master  equat ion rather than  the 
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FP equations obtained from a master equation or from a Langevin-type 
equation. He used a birth and death process as a master equation model and 
formulated a system-size expansion method in which the small expansion 
parameter is the inverse of the system size. This approach has also been 
investigated and applied by other investigators ~a~ and has been shown to be 
a powerful method for the calculation of nonequilibrium properties of 
macrovariables in many nonlinear systems. 

There are, however, cases in which the system-size expansion method is 
not applicable. In particular, it cannot be used in the analysis of the long-time 

behavior of nonlinear systems with multiple stationary states. Alternative 
approaches to this problem have been developed by various authors. Thus, 
the relaxation from a metastable state has been investigated by an extension 
of Kramers' method, (5,6'1a~ by a double Gaussian approximation method, ~7,1~ 
by a relaxation mode analysis, ~8'12~ and by a mean first passage time calcula- 
tion. (9~ The question that has been addressed in these analyses is that of the 
influence of the system size on the relaxation time of a system from a meta- 
stable state to the equilibrium state. All of these methods yield identical results 
for appropriately chosen models. It is now clear that the system size dependence 
of the relaxation time from a metastable state depends only on certain gross 

features of the models, so that quite different models corresponding to 
different physical problems will yield similar results. 

In the preceding paper of this series, Oppenheim et al. ~9~ studied the 
system size dependence of the relaxation times of a nonlinear system via a 
master equation approach. This involves some rather cumbersome analysis. 
From some of our earlier work on linear stochastic systems, (~4~ it is clear that 
the simplest and most tractable method for the calculation of relaxation times 
is via the FP equation. As van Kampen (~ has shown, the usual FP equation 
approach yields incorrect results for nonlinear systems, a finding which we 
verify in this paper. However, as we will demonstrate below, it is possible to 
derive a FP equation using a well-defined and reasonable prescription that 
does yield the correct relaxation times. This finding opens up the use of the 
more convenient techniques of the FP equation for the discussion of relaxation 
times in nonlinear, multistate systems. 

In Section 2 we derive various possible forms of FP equations for a 
particular nonlinear system with several stationary states. In Section 3 we 
obtain the equations for the mean first passage time for the generic FP equa- 
tion. To estimate the relaxation time from the metastable state we use the 
mean first passage from this state to appropriately chosen boundary states. 
In Section 4 we explicitly calculate the system size dependence of the relaxa- 
tion time from a metastable state and thereby establish the correct FP equation 
that must be used for such calculations. This FP equation is distinguished 
from the other FP equations discussed here by the property that its stationary 
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solution is the correct equilibrium solution for the nonlinear system under 
study. This is the sufficient condition for the successful calculation of the 
relaxation time from a metastable state. 

In a subsequent paper we will show that all the various FP equations 
discussed here yield identical and correct results for the system-size dependence 
of the relaxation times from unstable states. The reason for this dichotomy is 
discussed briefly in Section 4. 

2. CHOICES OF FOKKER-PLANCK EQUATIONS 

A Fokker-Planck equation has the general form 

~ --~x [A(x)P(x, t)] + ~ ~ [B(x)P(x, t)] (1) 

where P(x, t) is the time-dependent probability distribution of an intensive 
macroscopic variable x, and ~ is the inverse &the  system size V, i.e., ~ = V- 1. 
The coefficients A(x) and B(x) depend on the particular system under study. 
The stationary distribution of Eq. (1), i.e., the solution of (1) with the left-hand 
side equal to zero, is denoted by Pst(x) and is given by 

Pst(x) = B ~  exp - U(x) (2) 

where K is a normalization constant and 

f x A ( x ' ) . ,  g(x) = - 2  ax (3) 

The quantity U can be considered a dimensionless free energy. In a thermal 
environment, U = U*/kT, where U* then has the dimension of energy per 
unit volume. 

In this section we discuss the different FP equations that can be derived 
by various standard methods. For specificity in the calculation of the relaxa- 
tion time from a metastable state, we choose the nonlinear chemical reaction 
system studied previously by Oppenheimet al., ~9~ i.e., 

A ~Z>X, A + X  ~2>2X, A + 2 X ~ 3 X  (4) 4k-1 <k-2 <k-a 

Here the macrovariable of interest is the time-dependent number density x(t) 
of species X, while the number of molecules of species A is assumed to be 
constant in time. The deterministic rate equation for the number Nx(t) of 
molecules X at time t is, with V equal to the volume of the reaction systems, 

N~(t) = klA + (~-~ A - k_l)Nx(t) + (-~fi2A -~-~)N~:2(t) - - ~  N~a(t) (5) 
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This rate equation can be rewritten as 

2 ( t )  = K[a - x ( t ) ][ f l  - x(t)][~, - x(t)] (6) 

where x ( t )  = N x ( t ) / V  is the number density of species X and where •, a,/3, 
and ~, are constants whose relation to the rate coefficients and system size can 
be obtained from Eq. (5). From (6) we see that this system has up to three 
stationary states given by x = a, x =/3, and x = 7- 

We will construct three different FP equations to describe the system (4). 
Their origin is schematically indicated in Fig. 1. The first FP equation of 
Fig. 1 is obtained by converting the deterministic rate equation (6) into a 
Langevin equation through the addition of a random noise term R(t): 

2(t) = ~[a - x(t)][/3 - x ( t ) l [ v  - x(t)] + R ( t )  (7) 

The random noise models the microscopic fluctuations of the system. We 
assume that R ( t )  is Gaussian and f-correlated with zero mean and variance 
of order ~ with E = V-1, i.e., 

( R ( t ) }  = O, ( R ( t ) R ( t ' ) )  = CKE ~(t - t ' )  (8) 

where C is a constant independent of e. By standard methods, the Langevin 
equation (7) can be converted to the FP equation (1) with coefficients 

A l ( x )  = K(a - x)(/3 - x ) ( v  - x ) ,  B I ( x )  = 2CK (9) 

To obtain the second FP equation of Fig. 1 we first model the system (4) 
by a birth and death type master equation according to standard procedures. 
The master equation for the probability distribution P ( x ,  t )  is given by (9) 

~ P ( x ,  t ) / e t  = d ( x ,  1)P(x - e, t) + d ( x ,  - 1 )P (x  + E, t) 

- [~r 1) + d ( x , - 1 ) ] e ( x ,  t) (10) 

\ 
I Stationary Oistrlbution ] 

chose F-P coefficienfs 
] to obtain F-P stationery / distribution P ..pm.e ~Jx. ST "ST 

[Fokkor-Planck EquationI I [, ,Fokker-PLanck EquotionTT ] [ Fokker-Planck EquationTlT I 
Fig. l. Flowsheet for the derivation of the Fokker-Planck equations, 

l odd ~-correiuted / 
Goussion Random Force 

Langevin Equation l [  Kromers-Moyal Expansion I I  

cut off at second order 
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The normalized transition rates s~(x, + 1) are 

d ( x ,  1) = K[(~ + ~ + 7')x 2 + ~&] + o(~) 
(11) 

s i ( x , - 1 )  = Kx(x 2 + aft + ~7" + 7"~) + O(e) 

Performing a Kramers-Moyal expansion of (10) and retaining only the first 
and second moments of the transition probabilities leads to the FP equation 
(I) with coefficients 

As(x) = K(a - x ) ~  - x)(7 - x), B2(x) = K(~ + x)(f3 + x)(7" + x) (12) 

Note that the FP equation obtained here is quite different from the one 
obtained via the Langevin equation. 

The third FP equation in Fig. l involves the exact stationary distribution 
of the master equation (10), which is obtained by setting the left-hand side 
equal to zero. We write this stationary solution in the form 

P ~E(x) = f ( x )  exp [ -  (1/e)4r (13) 

where(S~f(x) is of O(~ ~ and 

d d ( x ,  1) 
- Ce(X) = In d ( x ,  - 1 )  (14) 

From Eqs. (10) and (11) it follows that 

(~ + ~ + 7")x ~ + ~/37" 
r = const - x In (x ~ + c~fl +/37' + 7"~)x 

+ 2(c~/3 +/37 + 7~) 1/2 tan-l[(c~/3 +/37 + 7a)-~J2x] (15) 

The FP equation is then constructed in such a way that its stationary solution 
Pst(X) [cf. Eq. (2)] is identical to that of the master equation PME(x). In other 
words, this FP equation is constructed so as to yield the correct stationary 
distribution. It follows from Eqs. (13), (14), and (2) that 

(~ + /3  + 7')x 2 + ~/37' 
As(x) = D(x) In (x 2 + aft + 87" + ya)x + O(e) (16) 

Bdx)  = 2n(x)  + o( , )  

where D(x) is a well-behaved positive function, and is independent of e. For 
simplicity we assume that D(x) is a constant D. This assumption has only a 
small affect on the scaling of time and does not affect our essential results on 
the system-size dependence of relaxation times. 
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For  each of the FP  equat ions developed above we can now construct  the 
free-energy-like funct ion U(x) of Eq. (3). 2 Equat ions  (9), (12), and (16) in 
(3) yield 

Ul(x) = c~ - C - 1 (  ~ T x  ~ + t37 + 7~x2 + ~ + ~ + T xa - 3 

4c,(/3 + cO( 7 + a ) ln(~  + x) (17) U2(x) = const + 2x - ~-~-_- ~)~-_2- ~ 

48(7 + ~)(,~ + ~ ) i b , ( ~  + 7)(,e + 7) ln(/3 + X) ln(7 + X) 

U~(x) = ~ ( x )  

In many physical systems the function U(x) is closely related to a free energy, such as, 
for instance, one of Landau-Ginzburg type. In chemical reaction systems there is no 
simple free energy function in the thermodynamic sense. However, since the stochastic 
theory of these systems has the same mathematical structure as the nonequilibrium 
thermodynamics of other physical systems, we call the function U(x) a free-energy-like 
function. 

UCx) 

I 
X m X U X$ 

Fig. 2. Free energy function U(x) for the nonlinear system (4). The metastable state is 
denoted by x,~, the unstable state by x~, and the stable state by x~. 
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The stationary states of the system (4) occur at the extrema of U(x). It is 
easily shown that the free-energy-like functions U~(x), U2(x), and U3(x) corre- 
sponding to FP equations I, I[, and III have extrema and thus stationary 
states at the same locations and of the same nature as those of the master 
equation (10). These stationary states are shown in Fig. 2. Only the third FP 
equation, however, has, by construction, the correct stationary distribution 
with P~t(x) = P~'(x). 

3. MEAN FIRST PASSAGE T IMES 

In this section we summarize the formulas used to obtain the mean first 
passage time ~l*'xs~ that we will then employ to estimate relaxation times. 

The conditional first passage time T(~lx0) is defined as the time when a 
process crosses x = ~ for the first time given that at time t = 0 the process 
w a s  a t  x = X o :  

Z(~lxo) - min{~-lX(~-) = ~, X(0) = x0} (18) 

The probability distribution r (]Xo) for the random variable T(~lXo) is 
obtained as follows. Le t f (x ,  t[ xo) be the probability density for the random 
variable X(t) to have value x without ever having crossed x = ( in the time 
interval (0, t), given that X(0) = x0. This probability density is the solution 
of the FP equation (I), where we now user(x,  t[ Xo) to denote the probability 
distribution, with initial condit ionf(x,  0]xo) = $(x - xo) and with boundary 
conditions 

f(~:, t[Xo) = 0 (19) 

) -~ [B(x)f(x, t I Xo)] - A(x)f(x, t I xo) = 0 (20) 
x = r  

Equation (19) represents an "absorbing"  boundary condition, which simply 
ensures that the process has not crossed ~ up to time t. Equation (20) is a 
reflecting boundary condition, with r representing the lower boundary (if 
xo < ~:) or the upper boundary (if xo > ~:) of the domain and where r may 
be + ~ .  For definiteness we will take r < x0 < ~. 

We next define the cumulative distribution function 

f ( t ;  ~lx0) ~- f(x, t[Xo) dx (21) 

which gives the probability that the random variable X(r) never crosses 
x = ~ during the time interval 0 ~< r ~< t given that X(0) = x0. Then it is 
also true that F(t; ~lXo) is the probability that the first passage time T(([x0) 
is greater than t, i.e., 

F(t; ~lx0) = Prob{T(~:lXo ) > t lX(0) = x0} (22) 
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The probability density for T(~:jXo) is then given by 

F(t; ~[Xo) (23) r  ~lXo) = - ~  

The first passage time moments are obtained from this probability density 
according to 

fo T.(~lxo) -- t"4(t; ~:[x0) dt (24) 

To evaluate these moments it is convenient to consider the backward 
Kolmogorov equation corresponding to the FP equation (1), 

~f(x,t,Xo) [A(xo) ~ ~ ~2 ] ~t -- ~ + 2 B(xo) ~ f(x, t l Xo) (25) 

with appropriate boundary conditions in accordance with (19) and (20). 
Performing the operations indicated in Eqs. (21), (23), and (24) on (25) yields 
a differential difference equation for the first passage time moments, 

E d B(xo) ~ r.(~lXo) + A(xo) ~ r,(~:lxo) = -nT._~((lxo) (26) 

with boundary conditions 

d 
Tn(~:l~:) = 0, dx---~o T"(~lx~176 = 0 (n >/ 1) (27) 

and with To(~lXo) - 1. 
Of particular interest in this paper is the mean first passage time Tl(~lXo), 

which we will relate later to characteristic relaxation times. The explicit 
solution of Eq. (26) for n = 1 with boundary conditions (27) is 

Tl(~,Xo) = - 2 f  ~ exp [!  U(x)]~Xexp[-(l/E)U(Y)]dydx B(y) (28) 
X 0 ~ r 

with U(x) and U(y) defined by Eqs. (2) and (3). Equation (28) for the mean 
first passage time is the main result to be used in our further analysis. It 
should be noted that the calculation of the mean first passage time, which is 
an average of the time-dependent function $(t; ~[xo), requires the knowledge 
of only the equilibrium distribution Pst(x) of the process. Thus, an accurate 
determination of the free-energy-like function U(x) is all that is required; it is 
not necessary to solve the full time-dependent FP equation. 

4. R E L A X A T I O N  F R O M  A M E T A S T A B L E  S T A T E  

We will now estimate the relaxation time of a system from a metastable 
state, using the results of the previous sections. A metastable state is shown 
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in Fig. 2 and is defined as a state at which U(x) has a minimum but not an 
absolute minimum. It is thus a local minimum of the free energy function. 
Denoting the absolute minimum of U(x) by x~ and the metastable state by 
Xm, we have 

U'(xm) ~- O, U"(Xrn ) > 0 

U'(xs) = O, U"(xs) > 0 (29) 

U(Xr.) > U(X3 

where the primes denote differentiation with respect to x. For illustrative 
purposes we will here consider the simplest nonlinear system with a meta- 
stable state, namely one that has one metastable, one unstable, and one stable 
state with xm < x~ < x~ (see Fig. 2). The system of Section 2 is of this type 
for appropriate values of a,/3, and y. 

To estimate the relaxation time rm from the metastable state xm to the 
stable state x~ we use the mean first passage time from Xm to the unstable 
state x~. This leads to a valid result since the relaxation time from x,  to x~ is 
negligibly short compared to the time of passage from Xm to X~.(9~ From 
Eq. (28) we then have 

=2 J~C x" exp[:[1 ] f ]  exp[-(1/e)U(Y)]dYB(y) (30) rm =-- Tl(Xu[Xm) = |,~ U(x) dx 
o o  

We have taken the lower boundary of the domain of x at -oo.  
Our main interest lies in the system-size dependence of rm, i.e., in the 

dependence of rm on E. We will establish upper and lower bounds on r= such 
that both bounds have the same dependence on e. This will yield the system- 
size dependence of r=. From the shape of U(x) shown in Fig. 2 it is seen that 
the relaxation time ~-= is bounded by 

V(m 1) < T m < Tim 2) (31) 

where 

,z, = - 2 f ]  exp[ !  U(x)]" FXmexp[-(1/')U(Y)]dy, i l ,2 - -  = 
e ,~ J_ ~ B(y) 

and where x r = x,~ and x (2> = x~. One can place further bounds on the 
integrals appearing in (32) by noting that the main contribution to the first 
integral comes from the vicinity of x = x~ and the main contribution to the 
second integral is from the region around x = Xm since the integrands have 
sharp maxima at these points. To estimate the first integral in (32) we use the 
bounds 

V ( & , )  - M l ( x  - x~,) 2 <~ V ( x )  <~ V(x~,)  - m l ( x  - x~) 2 

x,~ < x < x~ (33) 
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where M1 and m~ are positive constants of O(e~ This immediately leads to 

t ~ 2  exp[! U(x~)] < f ~  exp[! U(x)l dx < u ~  expI! U(x~)] (34)  

where ~z and vz are positive constants of O(E ~ related to M~ and mz. To 
estimate the second integral in (32) the appropriate bounds are 

U(Xm) + m~(x -- x,.) ~ ~ U(x) ~ U(x~) + M~(x - x,.) ~ 
Xr. --  e < X < X~ (35)  

where c, m2, and M2 are positive constants of O(~~ These bounds in turn 
restrict the second integral in (32), 

f x,~ exp [ -  (1/e) U(x)] 
< B(x) dx 

~ - o o  

v")~1/2 exp l !U(xm)]  (36) 

where/~) and v~ ) are positive constants of O(e~ We have assumed that the 
e-independent function B(x) is a slowly varying function of x compared to the 
variation of the numerator of the integrand near xm [cf. Eqs. (9), (12), and 
(16)1. 

It is now a straightforward matter to establish that (34) and (36) in (32) 
yield bounds ~ )  and ~ for the relaxation time ~'m that are of the same order 
of magnitude in ~. It therefore follows that ~'m must have the same behavior, 
given by 

":m = K exp{(1/e)[U(x,) - U(xm)]} (37) 

where the coefficient K is of O(e~ 
The relaxation time from a metastable state thus grows exponentially 

with system size, a conclusion that has also been reached for other models 
and by other methods. (a,6'~-1~ The form of Eq. (37) shows the sensitive 
dependence of the relaxation time on the barrier height [U(x~) - U(Xm)], a 
result which has also been pointed out previously. (la) This dimensionless 
barrier height is thus the important feature of the system that one must 
determine accurately in order to obtain the correct relaxation time from a 
metastable state. It is therefore necessary to choose a FP equation whose free 
energy function not only correctly locates the stable, metastable, and unstable 
extrema in agreement with the deterministic rate equation or the corre- 
sponding master equation, but whose free energy function has the correct 
magnitude at these extrema. 

In view of these requirements, only the third of the three FP equations 
discussed in Section 2 yields the correct relaxation time from a metastable 
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state,  since it has been specifically const ructed  to yield the  correct  values of  
the  free energy funct ion U(x) at  the extrema.  I t  is a s imple ma t t e r  to check 
tha t  the first and  second F P  equat ions  o f  Sect ion 2 do no t  yield the correct  
d imensionless  bar r ie r  height  [U(x~) - U(xm)]. Since the re laxa t ion  t ime f rom 
an unstable  state,  i.e., a m a x i m u m  of  the  poten t ia l ,  does not  depend  upon  the 
bar r ie r  height,  one would expect  tha t  all three F P  equat ions  will yield the 
ident ical  system-size dependence  of  the re laxa t ion  t ime f rom an unstable  state. 

R E F E R E N C E S  

1. N. G. van Kampen, Can. J. Phys. 39:551 (1961); in Fluctuation Phenomena in Solids, 
R. E. Burgess, ed. (Academic Press, New York, 1965); Adv. Chem. Phys. 34:145 
(1976). 

2. G. Nicolis and I. Prigogine, Proc. Nat. Acad. Sci. US 68:2101 (1971); G. Nicolis, 
Adv. Chem. Phys. 29:63 (1975); M. Malek-Mansour and G. Nicolis, Y. Stat. Phys. 
13:197 (1975). 

3. R. Kubo, K. Matsuo, and K. Kitahara, J. Stat. Phys. 9:51 (1973). 
4. J. Keizer, J. Chem. Phys. 65:4431 (1976); 67:1473 (1977); J. Math. Phys. 18:1316 

(1977). 
5. R. Landauer, J. AppL Phys. 33:2209 (1962); I. Matheson, D. F. Walls, and C. W. 

Gardiner, J. Stat. Phys. 12:21 (1975). 
6. R. B. Griffiths, C. Y. Weng, and J. S. Langer, Phys. Rev. 149:301 (1966). 
7. J. S. Langer, M. Bar-on, and H. D. Miller, Phys. Rev. A 11:1417 (1975). 
8. K. Matsuo, .L Star. Phys. 16:169 (1977). 
9. I. Oppenheim, K. E. Shuler, and G. Weiss, Physica 88A:191 (1977). 

10. Y. Saito, J. Phys. Soc. Japan 41:388 (1976). 
11. M. Suzuki, Prog. Theor. Phys. 56:77, 477 (1976). 
12. H. Tomita, A. Ito, and H. Kidachi, Prog. Theor. Phys. 56:786 (1976). 
13. N. G. van Kampen, J. Stat. Phys. 17:71 (1977). 
14. K. Lindenberg, K. E. Shuler, J. Freeman, and T. J. Lie, J. Stat. Phys. 12:217 (1975). 
15. L. Pontryagin, A. Andronow, and A. Witt, Zh. Eksp. Teor. Fiz. 3:112 (1933); G. H. 

Weiss, Adv. Chem. Phys. 13:1 (1967). 


